Министерство просвещения Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ульяновский государственный педагогический университет имени И.Н. Ульянова» (ФГБОУ ВО «УлГПУ им. И.Н. Ульянова»)

Факультет физико-математического и технологического образования Кафедра информатики

УТВЕРЖДАЮ

Проректор по учебно-методической

работе //

С.Н. Титов

" syst worker

2022 г.

ПРАКТИКУМ РЕШЕНИЯ ОПТИМИЗАЦИОННЫХ ЗАДАЧ НА ЭВМ

Программа учебной дисциплины модуля «Исследование операций и информационные технологии в практической деятельности»

основной профессиональной образовательной программы высшего образования — программы бакалавриата по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки),

направленность (профиль) образовательной программы Информатика. Иностранный язык

(очная форма обучения)

Составитель: Аббязова М.Г., старший преподаватель кафедры информатики

Рассмотрено и одобрено на заседании ученого совета факультета физикоматематического и технологического образования, протокол от «25» марта 2022 r. № 5

Место дисциплины в структуре образовательной программы

Дисциплина «Практикум решения оптимизационных задач на ЭВМ» относится к дисциплинам обязательной части Блока 1. Дисциплины (модули) вариативного модуля «Исследование операций и информационные технологии в практической деятельности» учебного плана основной профессиональной образовательной программы высшего образования — программы бакалавриата по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), направленность (профиль) образовательной программы «Информатика. Иностранный язык», очной формы обучения.

Дисциплина опирается на результаты обучения, сформированные в рамках школьного курса «Информатика и ИКТ» или соответствующих дисциплин среднего профессионального образования, а также на результаты обучения, полученные при изучении дисциплин Технологии цифрового образования, Математические основы информатики, Программное обеспечение систем и сетей, Программирование, Основы теории вероятностей.

Результаты изучения дисциплины являются теоретической и методологической основой для изучения дисциплин: Теория и методика обучения информатике, Практикум решения задач по информатике, Решение олимпиадных задач по информатике, Компьютерное моделирование.

1. Перечень планируемых результатов обучения (образовательных результатов) по лиспиплине

Целью освоения дисциплины «Практикум решения оптимизационных задач на ЭВМ» является содействие становлению профессиональной компетентности будущего педагога через систематизацию знаний о методах решения оптимизационных задач.

Задачей освоения дисциплины формирование у студентов представлений о современной проблематике теории оптимизации, о возможностях применения для решения оптимизационных задач имеющегося программного обеспечения и изученных ранее языков программирования.

В результате освоения программы бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине «Практикум решения оптимизационных задач на ЭВМ» (в таблице представлено соотнесение образовательных результатов обучения по дисциплине с индикаторами достижения компетенций):

Компетенция и	Образовательные результаты дисциплины		
индикаторы ее	(этапы формирования дисциплины)		
достижения в	знает	умеет	владеет
дисциплине			
УК-2. Способен	OP-1	OP-2	OP-3
определять круг задач	основы правового	выделять в	способами
в рамках поставленной	регулирования	поставленной цели	выявления
_ *	проектной и	основные	резервов в целях
цели и выбирать	исследовательской	смысловые и	компенсации
оптимальные способы	деятельности;	структурные	недостатка
их решения, исходя из	основные этапы	компоненты;	имеющихся
действующих	проектирования,	ВЫЯВЛЯТЬ	ресурсов;
правовых норм,	виды рисков и	возможности	навыками решения
имеющихся ресурсов	ограничений в	преодоления	конкретных задач
	проектной	рисков и	проекта на уровне
и ограничений.	деятельности.	ограничений с	заявленного
УК-2.2. Оценивает		учетом имеющихся	качества и за
вероятные риски и		ресурсов и	установленное
ограничения,		резервов; выбирать	время; навыками
определяет		оптимальный	публичного
ожидаемые		способ решения	представления
результаты решения		каждой задачи	результатов

поставленных задач.	проекта с учетом	проекта.
УК-2.3. Использует	положений	
инструменты и	действующих	
техники цифрового	нормативных	
моделирования для	правовых актов и	
реализации	имеющихся	
образовательных	ресурсов, и	
процессов.	ограничений;	
	использовать	
	инструменты и	
	техники цифрового	
	моделирования для	
	реализации	
	образовательных	
	процессов	

2. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

			Учебн	ные занятия			
Номер семестра	Труд	Всего Ванатия, час Ванатия, час Ванатия, час Ванатия, час		Гекции, час Юораторные анятия, час		амостоятельная работа, час	Форма итоговой аттестации
	Зач. ед.	Часы	•	5		Cal	
7	2	72	12	20	-	40	Зачет
Итого:	2	72	12	20	-	40	Зачет

3. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

3.1.Указание тем (разделов) и отведенного на них количества академических часов и видов учебных занятий

Наименование раздела и тем	Количество	часов	по	формам
	организации о	бучения		T - I

	Land Land	лекц. занятия Лаб. занятия	Практ. занятия	Самост. работа
Основные понятия и математическая модель операции	2			2
Линейное программирование	2	4		8
Введение в теорию игр	2	4		8
Специальные задачи линейного программирования	2	4		8
Нелинейное программирование	2	4		6
Динамическое программирование	2	4		8
Всего	12	20		40

3.2.Краткое описание содержания тем (разделов) дисциплины Краткое содержание курса (5 семестр)

І. ОСНОВНЫЕ ПОНЯТИЯ И МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПЕРАЦИИ

Понятие операции, оперирующей стороны, цели, решения, рационального поведения. Математическое моделирование процессов принятия решений. Оптимизационные задачи в науке, технике, экономике. Общая математическая модель операции. Понятие стратегии. Понятие целевой функции. Локальный и глобальный экстремум. Теоремы существования. Одномерная и многомерная оптимизация. Безусловный экстремум: необходимые и достаточные условия. Примеры.

II. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Постановка задачи, геометрический смысл, примеры. Графический метод решения двумерной задачи линейного программирования. Симплекс-метод- обоснование, алгоритм метода. Метод искусственного базиса. Дробно-линейные задачи. Двойственные задачи и теоремы двойственности

III. ВВЕДЕНИЕ В ТЕОРИЮ ИГР

Определение игры, правил игры, стратегии игрока, оптимальной стратегии, цены игры. Классификация игр. Конечные матричные игры для двух игроков с нулевой суммой. Графический метод решения двумерной игры. Сведение матричной игры к задаче линейного программирования.

IV.СПЕЦИАЛЬНЫЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. Транспортная задача — постановка. Доказательство существования оптимального решения. Метод потенциалов. Целочисленное линейное программирование. Метод Гомори. Задачи параметрического программирования.

V. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Общая постановка задачи нелинейного программирования. Выпуклое программирование, двойственность, теорема Куна-Таккера. Численные методы решения (градиентные, возможных направлений, множителей Лагранжа, Ньютона).

VI. ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

Многошаговые задачи принятия решений. Формулировка задачи динамического программирования, примеры (задачи распределения ресурсов, управления запасами, сетевые). Метод динамического программирования. Принцип оптимальности и функция Беллмана.

4. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Общий объем самостоятельной работы студентов по дисциплине включает аудиторную и внеаудиторную самостоятельную работу студентов в течение семестра.

Аудиторная самостоятельная работа осуществляется в форме выполнения лабораторных работ, письменных проверочных работ по дисциплине.

Внеаудиторная самостоятельная работа осуществляется в формах:

- подготовки к защите лабораторной работы;
- подготовка к мини-выступлениям.

Материалы, используемые для текущего контроля успеваемости обучающихся по дисциплине:

1. Аббязова М.Г., Беляева Е.В. Исследование операций: методические разработки для студентов физико-математического факультета – Ульяновск: УлГПУ, 2011.

Вопросы для самостоятельного изучения обучающимися (темы мини-выступлений)

- 1. История развития теории оптимизационных задач
- 2. Метод градиентного спуска
- 3. Игры в условиях неопределенности
- 4. Решение оптимизационных задач в Excel
- 5. Решение оптимизационных задач средствами программирования
- 6. Задачи оптимизации в SciLab

5. Примерные оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине Организация и проведение аттестации бакалавра

ФГОС ВО в соответствии с принципами Болонского процесса ориентированы преимущественно не на сообщение обучающемуся комплекса теоретических знаний, но на выработку у бакалавра компетенций — динамического набора знаний, умений, навыков и личностных качеств, которые позволят выпускнику стать конкурентоспособным на рынке труда и успешно профессионально реализовываться.

В процессе оценки бакалавров необходимо используются как традиционные, так и инновационные типы, виды и формы контроля. При этом постепенно традиционные средства совершенствуются в русле компетентностного подхода, а инновационные средства адаптированы для повсеместного применения в российской вузовской практике.

Цель проведения аттестации — проверка освоения образовательной программы дисциплины-практикума через сформированность образовательных результатов.

Промежуточная аттестация осуществляется в конце семестра и завершает изучение дисциплины; помогает оценить крупные совокупности знаний и умений, формирование определенных компетенций.

Оценочными средствами текущего оценивания являются: мини-выступления, тесты по теоретическим вопросам дисциплины, защита практических работ и т.п. Контроль усвоения материала ведется регулярно в течение всего семестра на лабораторных занятиях.

№ π/π	СРЕДСТВА ОЦЕНИВАНИЯ, используемые для текущего оценивания показателя формирования компетенции	Образовательные результаты дисциплины
	Оценочные средства для текущей аттестации OC-1 Мини-выступление	OP-1 Знать основы правового регулирования проектной и исследовательской деятельности; основные этапы проектирования, виды рисков и ограничений в проектной деятельности.
	ОС-2 Защита лабораторной работы	ОР-2 выделять в поставленной цели основные смысловые и структурные компоненты; выявлять возможности преодоления рисков и ограничений с учетом имеющихся ресурсов и резервов; выбирать оптимальный способ решения каждой задачи проекта с учетом положений действующих нормативных правовых актов и имеющихся ресурсов, и ограничений; использовать инструменты и техники цифрового моделирования для реализации образовательных процессов
	ОС-3 Контрольная работа	ОР-2 выделять в поставленной цели основные смысловые и структурные компоненты; выявлять возможности преодоления рисков и ограничений с учетом имеющихся ресурсов и резервов; выбирать оптимальный способ решения каждой задачи проекта с учетом положений действующих нормативных правовых актов и имеющихся ресурсов, и ограничений; использовать инструменты и техники цифрового моделирования для реализации образовательных процессов ОР-3 Владеть способами выявления резервов в целях компенсации недостатка имеющихся ресурсов; навыками решения конкретных задач проекта на уровне заявленного

	качества и за установленное время; навыками публичного представления результатов проекта.
Оценочные средства для промежуточной аттестации экзамен ОС-3 Экзамен в форме устного собеседования по вопросам	OP-1, OP-2, OP-3

Материалы, используемые для текущего контроля успеваемости обучающихся по дисциплине

Пример контрольной работы.

Критерии оценивания: за правильное выполнение двух заданий ставится 32 балла Задача 1 Решить транспортную задачу, используя инструмент «Поиск решения» табличного процессора Excel

11	10	9	8	280
9	10	11	8	140
7	10	12	8	130
250	120	130	100	='

Задача 2

Найти максимальное и минимальное значения функции

$$F = 2x_1 + 8x_2 + 25$$
 при условиях
$$\begin{cases} 3x_1 + 2x_2 \ge 7 \\ 10x_1 - x_2 \le 8 \\ -18x_1 + 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

Использовать графический калькулятор Desmos

Материалы, используемые для промежуточного контроля успеваемости обучающихся по дисциплине

OC-4 Зачет в форме устного собеседования по вопросам Перечень вопросов к зачету

- 1. Исследование операций как научная область. Основные понятия исследования операций. Общая постановка оптимизационной задачи.
- 2. Задачи линейного программирования. Пример задачи. Общая и основная ЗЛП. Переход от одной формы к другой.
- 3. Поиск решения задачи линейного программирования.
- 4. Алгоритм симплекс-метода. Симплекс-таблицы.
- 5. Обоснование симплекс-метода.
- 6. Двойственные задачи линейного программирования.

- 7. Введение в теорию игр. Основные определения. Основная теорема матричных игр.
- 8. Матричные игры и задачи линейного программирования.
- 9. Транспортная задача. Постановка задачи. Доказательство существования оптимального плана.
- 10. Метод потенциалов решения транспортной задачи. Дисбаланс и вырожденность в транспортной задаче.
- 11. Задачи нелинейного программирования. Графический метод решения. Метод множителей Лагранжа.
- 12. Теорема Куна Таккера для задачи выпуклого программирования.
- 13. Метод штрафных функций решения задачи математического программирования.
- 14. Метод динамического программирования. Принцип поэтапного построения оптимального управления. Общая идея метода динамического программирования.

В конце изучения дисциплины подводятся итоги работы студентов на лекционных и практических занятиях путем суммирования заработанных баллов в течение семестра.

Критерии оценивания знаний обучающихся по дисциплине

Формирование балльно-рейтинговой оценки работы обучающихся

		Посещение лекций	Посещение практических занятий	Работа на практических занятиях	зачет
7	Разбалловка по видам работ	6 x 1=6 баллов	10 x 1=10 баллов	152 балла	32 балла
семестр	Суммарный макс. балл	6 баллов тах	16 баллов max	168 баллов max	200 баллов max

Критерии оценивания работы обучающегося по итогам семестра

	Баллы (33Е)
«зачтено»	от 101 до 200
«не зачтено»	100 и менее

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Успешное изучение курса требует от обучающихся посещения лекций, активной работы на лабораторных занятиях, выполнения всех учебных заданий преподавателя, ознакомления с основной и дополнительной литературой.

Запись лекции — одна из форм активной самостоятельной работы обучающихся, требующая навыков и умения кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения, формулировки. В конце лекции преподаватель оставляет время (5 минут) для того, чтобы обучающиеся имели возможность задать уточняющие вопросы по изучаемому материалу. Из-за недостаточного количества аудиторных часов некоторые темы не удается осветить в полном объеме, поэтому преподаватель, по своему усмотрению, некоторые вопросы выносит на самостоятельную работу студентов, рекомендуя ту или иную литературу. Кроме этого, для лучшего освоения материала и систематизации знаний по дисциплине, необходимо постоянно разбирать материалы лекций по конспектам и учебным пособиям. В случае необходимости обращаться к преподавателю за консультацией.

Подготовка к лабораторным занятиям.

При подготовке к лабораторным занятиям студент должен изучить теоретический материал по теме занятия (использовать конспект лекций, изучить основную литературу, ознакомиться с дополнительной литературой, при необходимости дополнить конспект, делая в нем соответствующие записи из литературных источников). В случае затруднений, возникающих при освоении теоретического материала, студенту следует обращаться за консультацией к преподавателю. Идя на консультацию, необходимо хорошо продумать вопросы, которые требуют разъяснения.

В начале лабораторного занятия преподаватель знакомит студентов с темой, оглашает план проведения занятия, выдает задание. В течение отведенного времени на выполнение работы студент может обратиться к преподавателю за консультацией или разъяснениями. В конце занятия проводится прием выполненных работ, собеседование со студентом.

Результаты выполнения лабораторных работ оцениваются в баллах, в соответствии с балльно-рейтинговой системой университета.

Планы лабораторных занятий

Лабораторная работа № 1. Линейное программирование

Цель работы: выполнив предложенные задания, ознакомиться с графическим методом решения двумерной задачи линейного программирования.

Рекомендации к самостоятельной работе

- 1. Проработать материал по теме лабораторной работы из [1],[2].
- 2. Повторить лекционный материал по темам «Линейное программирование», ответить на контрольные вопросы.

Содержание работы:

- 1. Решить задачу линейного программирования графическим методом вручую
- 2. Решить задачу, пользуясь инструментом «Поиск решения» в Excel

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном и электронном виде.

Лабораторная работа № 2. Линейное программирование.

Цель работы: выполнив предложенные задания, ознакомиться с симплекс-методом решения задачи линейного программирования.

Рекомендации к самостоятельной работе

- 1. Проработать материал по теме лабораторной работы из [1],[2].
- 2. Повторить лекционный материал по темам «Линейное программирование», ответить на контрольные вопросы.

Содержание работы:

- 1. Решить задачу линейного программирования симплекс-методом вручную
- 2. Решить задачу, пользуясь инструментом «Поиск решения» в Excel

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном и электронном виле.

Лабораторная работа № 3. Элементы теории игр.

Цель работы: выполнив предложенные задания, ознакомиться с графическим методом решения двумерной игры.

Рекомендации к самостоятельной работе

1. Проработать материал по теме лабораторной работы из [6].

2. Повторить лекционный материал по темам «Элементы теории игр», ответить на контрольные вопросы.

Содержание работы:

- 1. Решить двумерную игру графическим методом.
- 2. Решить игру, пользуясь инструментом «Поиск решения» в Excel.

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном и электронном виде.

Лабораторная работа № 4. Элементы теории игр.

Цель работы: выполнив предложенные задания, ознакомиться с симплекс-методом решения игры.

Рекомендации к самостоятельной работе

- 1. Проработать материал по теме лабораторной работы из [6].
- 2. Повторить лекционный материал по темам «Элементы теории игр», ответить на контрольные вопросы.

Содержание работы:

- 1. Решить игру симплекс- методом.
- 2. Решить игру, пользуясь инструментом «Поиск решения» в Excel.

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном и электронном виде.

Лабораторная работа № **5.** Специальные задачи линейного программирования.

Цель работы: выполнив предложенные задания, ознакомиться с методами решения транспортной задачи.

Рекомендации к самостоятельной работе

- 1. Проработать материал по теме лабораторной работы из [1],[2].
- 2. Повторить лекционный материал по темам «Линейное программирование», ответить на контрольные вопросы.

Содержание работы:

- 1. Решить транспортную задачу методом потенциалов вручную
- 2. Решить задачи, пользуясь инструментом «Поиск решения» в Excel

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном и электронном виде.

Лабораторная работа № 6. Специальные задачи линейного программирования.

Цель работы: выполнив предложенные задания, ознакомиться с методами решения дробнолинейной задачи.

Рекомендации к самостоятельной работе

- 1. Проработать материал по теме лабораторной работы из [1],[2].
- 2. Повторить лекционный материал по темам «Линейное программирование», ответить на контрольные вопросы.

Содержание работы:

- 1. Решить дробно-линейную задачу методом вручную
- 2. Решить задачи, пользуясь инструментом «Поиск решения» в Excel

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном и электронном виде.

Лабораторная работа № 7. Нелинейное программирование.

Цель работы: выполнив предложенные задания, ознакомиться с графическим методом решения нелинейных задач.

Рекомендации к самостоятельной работе

- 1. Проработать материал по теме лабораторной работы из [1],[2].
- 2. Повторить лекционный материал по темам «Нелинейное программирование», ответить на контрольные вопросы.

Содержание работы:

1. Решить нелинейную задачу графическим методом.

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном виде.

Лабораторная работа № 8. Нелинейное программирование.

Цель работы: выполнив предложенные задания, ознакомиться с методом Лагранжа решения нелинейных задач.

Рекомендации к самостоятельной работе

- 1. Проработать материал по теме лабораторной работы из [1],[2].
- 2. Повторить лекционный материал по темам «Нелинейное программирование», ответить на контрольные вопросы.

Содержание работы:

1. Решить нелинейную задачу методом Лагранжа.

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном виде.

Лабораторная работа № 9-10. Динамическое программирование.

Цель работы: выполнив предложенные задания, ознакомиться с методом динамического программирования решения оптимизационных задач.

Рекомендации к самостоятельной работе

- 1. Проработать материал по теме лабораторной работы из [1],[2].
- 2. Повторить лекционный материал по темам «Динамическое программирование», ответить на контрольные вопросы.

Содержание работы:

1. Решить задачу методом динамического программирования.

Форма представления отчета:

Студент должен представить решение предложенных заданий в письменном виде.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература

1. Балдин К.В. Математическое программирование: Учебник/ К.В. Балдин, Н.А. Брызгалов,

- А.В. Рукосуев. / Под общ. ред. д.э.н.проф. К.В. Балдина. 2-е изд. М.: Издательскоторговая корпорация «Дашков и K° », 2018. 218 с. ISBN 978-5-394-01457-4. Текст: электронный// URL: https://znanium.com/read?id=100977
- 2. Сдвижков, О. А. Практикум по методам оптимизации : учебное пособие / О. А. Сдвижков. Москва : Вузовский учебник : ИНФРА-М, 2020. 231 с. ISBN 978-5-9558-0372-2. Текст : электронный. URL: https://znanium.com/catalog/product/1036460 (дата обращения: 23.05.2022). Режим доступа: по подписке.

Дополнительная литература

- 1. Струченков, В. И. Прикладные задачи оптимизации. Модели, методы, алгоритмы : практическое пособие / В. И. Струченков. Москва : СОЛОН-ПРЕСС, 2020. 314 с. ISBN 978-5-91359-191-3. Текст: электронный. URL: https://znanium.com/catalog/product/1858791 (дата обращения: 23.05.2022). Режим доступа: по подписке.
- 2. Мастяева, И. Н. Методы оптимальных решений: Учебник / Мастяева И.Н., Горемыкина Г.И., Семенихина О.Н. Москва: КУРС, НИЦ ИНФРА-М, 2018. 384 с. ISBN 978-5-905554-24-7. Текст : электронный. URL: https://znanium.com/catalog/product/944821 (дата обращения: 23.05.2022). Режим доступа: по подписке.

Интернет-ресурсы

- Писарук, Н. Н. Исследование операций / Н. Н. Писарук. Минск : БГУ, 2015./ [Электронный ресурс]. Режим доступа http://pisaruk.narod.ru/books/OR.pdf
- Решение оптимизационных задач в SciLab./ [Электронный ресурс]. Режим доступа bourabai.ru/library/scilab_glava_13.pdf